Isesõitvad autod ei tuvasta(nud) musta nahavärviga inimesi
Sissejuhatus
Meie pidevalt arenevas tehnikaajastus on järjest teemakohasemaks saanud erinevad autonoomsed süsteemid, eriti autod. Kahjuks, aga on nendel veel üpris palju lahendamata takistusi ja probleeme, mis laseksid neil vabalt teedel kulgeda - üks suurim nendest on inimeste tuvastamine ja sellega seonduv surmade hulk, mis on hetkel natukene liiga suur ja vägagi kaldub see tumedanahaliste poole.
Isesõitvate autode lühiajalugu
Kui teha juttu isesõitvatest autodes, siis oleks mõistlik alustada täiesti algusest.
1925
Eksperimente hakati tegema juba 1920ndatel aastatel. 1925. aastal demonstreeris raadioseadmete firma, Houndina Radio Control, New Yorki tänavatel nn. Ameerika Ime (American Wonder). See auto suutis läbida korraliku liiklusummiku. Autole oli peale pandud antenn ning autot juhiti inimese poolt, kes oli teises autos selle "isesõitva" auto taga, kasutades raadio impulsse, mida antenn siis kinni püüdis. Seejärel juhatas antenn signaale edasi kuni väikeste elektrimootoriteni, mis siis suunasid autot vajalikus suunas. [1]. Selline automatiseeritud autode juhtimise idee proovimine kehtis vähemalt 30 aastat.
1950 - 1960
Järgmine suur samm juhtus 1953. aastal, kui suudeti auto põhimõtteliselt joone järgi sõitma panna. See traat mida auto jälitas, oli labori põrandasse peidetud. Seda süsteemi taheti proovida ka päris liikluses, esialgu ainult maanteedel. 1957. aastal seda ka tehti, kui suudeti maanteele täissuuruses süsteem paigaldata 120 meetrilisele lõigule. Süsteem paigaldati asfaldi alla. Seda demonstreeriti põhjalikumalt aastal 1960, kui uudistajaid lubati nende autodega "sõitma". Eeldati, et suudetakse süsteem turule viia 1975. aastaks. 1960ndal aastal plaaniti rajada eksperimentaalne elektrooniliselt kontrollitav maantee. 4 USA osariiki ka panustasid juba sellele. Kahjuks aga jäi see ainult plaaniks [1].
1980
1980. aastal viis EUREKA läbi 750 miljonit eurot maksva projekti, mis keskendus puhtalt autonoomsetele sõidukitele. Samal sajandil suutis Autonomous Land driven Vehicle project (Autonoomse maismaasõiduki projekt) või siis lühidalt, ALV, demonstreerida teed jälgivat autot, mis kasutas arvutinägemist (computer vision-it) ja autonoomset robotjuhtimist. Sellega suudeti sõita kiirustel kuni 31 km/h. 1987. aastal suudeti see sama masin ka maastikul iseseisvalt sõitma panna, kasutades erinevaid sensoreid [2]. 1995. võeti see üks samm kõrgemale, kui projekt nimega Navlab läbis umbes 5000 kilomeetrit, milles pea 98% oli täiesti autonoomselt juhitud. Sellele anti nimeks "No Hands Across America". Nende auto oli aga ainult pooleldi autonoomne. Rooli juhtimine oli masina poolt, aga pidur ja gaas olid inimeste poolt juhitavad, puhtalt ohutuse pärast. [3].
2010 - 2014
Alates 2010. aastast hakkasid autonoomsed masinad kujunema juba selliseks, nagu nad on tänapäeval. Paljud suured autotootjad hakkasid testima sõitjateta autosid. Näiteks saatis Audi enda TTS mudeli Pike's Peaki tippu (kuulus mägi kus toimub palju mäkke ronimise võistluseid) saavutades võistluskiiruse lähedaseid kiiruseid [4]. Muidugi ei tasu ka mainimata jätta tänapäeval väga populaarset Teslat, täpsemalt siis autonoomse süsteemiga varustatud Model S-i. Sellega tulid nad välja aastal 2014.
Autonoomsuse viis taset
Isejuhtimise defineerimiseks on mii Ameerika Ühendriikide Transpordiamet (National Highway Traffic Safety Administration ehk NHTSA) kui ka rahvusvaheline autoinseneride ühing Society of Automotive Engineers International ehk SAE International on defineerinud isejuhtiva sõiduki viis eri taset [5].
Tase 0: autonoomsust pole
Autonoomsus puudub, ehk juht peab tegema kõik ise, kuid võib natukene teavitustega aidata, andes näiteks teada, kui inimene või auto on liiga lähedal.
Tase 1: juhiabi
Selles tasemes on teatud funktsioonid, mis juhti aitavad, aga juht peab koguaeg ka ise tegevuses. Juhti abistavad tehnoloogiad on näiteks stabiilsuskontroll, rajahoidja, parkimisabi automaatse roolikeeramisega ning muud tehnoloogiad. Sellised on enamus meie tänavatel liiklevad autod.
Tase 2: osaline autonoomsus
Teine tase on juba selline, kus automaatne süsteem suudab kontrollida ka pidurit, gaasi ja roolikeeramist, aga juhil on siiski vastutus hoida silma peal ja vajadusel sekkuda, mille peale siis automaatsüsteem deaktiveerub. Siin kasutatavad tehnoloogiad on näiteks adaptiivne kiirusehoidja ja automaatne sõiduraja hoidja.
Tase 3: tingimuslik autonoomsus
Kolmas tase ehk piiratud isejuhtivus: juht võib täielikult loobuda kõikidest ohutus-kriitilistest funktsioonidest teatud oludes. Sõiduk on võimeline tuvastama, mil juhil on taas tarvis kontroll tagasi võtta ja jätab juhile “arvestatava reageerimisaja” kontrolli tagasi võtmiseks. Näide oleks ummikuassistent, mis siis kulgeb ummikuga vaikselt edasi, aga kui ummikust on välja jõutud, on juhtimine taas juhi käes.
Tase 4: kõrge autonoomsus
Neljandal tasemel on suurem osa kontrollist masina käes. Masin on suuteline ise kiirendama, pidurdama ja pöörama. Need on võimelised ka teeolusid kontrollima ja reageerima takistustele, mis määrab siis millal auto peaks pöörama ja/või rida vahetama. Siinkohal on võimalus täielikult loobuda autos viibivatest inimestest.
Tase 5: täielik autonoomsus
Siinkohal on masinal täielik kontroll, inimesel põhimõtteliselt polegi rooli antud, vaid autot juhib tehisintellekt. Juht võib samal ajal teha hoopiski midagi muud, ilma et autole tähelepanu pööraks. Auto suudab reageerida päriselu olukordadele nagu näiteks liiklusummikud, teetööd. Hetkel selliseid masinaid põhimõtteliselt ei eksisteerigi.
Kuidas isesõitvad autod näevad
Objektide nägemine ja nende tuvastamine on keeruline protsess. Inimesel on nägemiseks ainult silmad, mis saadavad saadud info ajju ning seal töödeldakse see meile arusaadavaks. Isesõitvatel autodel jääb aga ühest paarist silmadest puudu. Töökindla nägemissüsteemi loomisel on võtmeks palju erinevaid sensoreid ja nende info kattuvus. Nii saab ühe "silma" abil kontrollida, mida teine "silm" nägi.[6]
GPS
Oma positsiooni kaardil näeb isesõitev auto GPS-süsteemiga. See annab veidi ebatäpse asukoha autost teel, mille saab erinevate teiste nägemissensorite abil täpsustada. Selle järgi teab auto kuhu ja mis suunas ta sõidab ning tihtipeale annab ainult asukoha abil välja lugeda liikluseeskirju, näiteks mis on antud piirkonnas tippsõidukiirus. Ideaalis oleks võimalik kokkupõrkeid teiste liiklejatega vältida GPS positsioonide põhjal, kuna aga see süsteem pole nii täpne ja kõik liiklejad ei kasuta kogu aeg GPS-i, tuleb see info autol üle kontrollida.
Radar
Objektide positsiooni ja kaugust autost aitab mõõta radar. Raadiolokaator saadab välja ruumis levivaid raadiolaineid, mis põrkavad objektidelt tagasi sensorisse. Selleks kulunud aeg mõõdetakse ning selle kaudu arvutatakse objekti kaugus. See süsteem aitab ümberringi tuvastada, kas, kui suured ja kui kaugel takistused asuvad. Radari boonuseks on näha takistusi ka täiesti pimedas, küll aga ei oska auto radarist saadud infoga tuvastada takistuse olemust ehk kas tegemist on jalakäija, posti või tuletõrjehüdrandiga. [7]
LIDAR-kaamera
Täpsema pildi saamiseks kasutatakse LIDAR-kaameraid. Laserskanneerimisseadme tööpõhimõte on tagasipeegeldunud laserimplulsilt kolmemõõtmeliste kordinaatide arvutamine. Lidar saadab välja infrapunalaserimplusse, mis põrkavad objektidelt tagasi ja selleks kulunud aeg arvutatakse ümber objekti asukohaks ruumis[8]. Tänu valguse levimise kiirusele on lidariga võimalik saada pilt väga suurest alast. Kuna laserimpulsse saadetakse korraga välja palju, on objektist võimalik saada üsnagi detailne kujutis, mille abil on võimalik tuvastada, mis objektiga on tegu. Sarnaselt radarile on lidari boonuseks näha objekte pimedas ning tänu oma lasertäpsusele ka näha objekte detailselt, puudu jääb ainult viis tuvastada objekti värvus.[6]
Kaamera
Kõige enam masinõpet nõudev nägemissüsteem on tavaline kaamera. Kaamerad on põhiline süsteem, mille abil tuvastatakse, mis objektiga lõpuks tegemist on. Reaalse pildiga on võimalik näha objekti kuju ja värvus. Kaamera jääb küll tavaliselt hätta takistuste kauguse määramisega, kus tulevad appi teised süsteemid, ning üldiselt on raskusi halva nähtavusega ajal, näiteks pimedas, udus, vihma ajal. Parima informatsiooni jaoks salvestatakse pilt 360° ringluses, kus rõhk on pandud ette näitavatele kaameratele. Kasutatakse ka erinevaid kaameraid heleduse-tumeduse mõõtmiseks ja värvi leidmiseks.[9]
Programmeering ja masinõpe
Eelnevalt toodud süsteemidest saadud info lükatakse kokku ja töödeltakse auto ajus. Kattuv informatsioon tuleb ainult kasuks, näiteks lidarist saadud pildi järgi saadud objekt kinnitatakse kaamera pildist saadud infoga. Süstemid ei oska ise kahjuks midagi nendega teha ja siin tulebki sisse masinõpe. Pole vahet kui palju erinevaid "silmi" autol on kui ta ei tea, mida nende andmetega peale hakata. Kõige suuremad probleemid takistuse tuvastamisel tekivad just siin. Masinale maailma õpetamine on aeganõudev ja väga mahukas ülesanne. Andmete ära tundmisel annab tunda iga süsteemi väke viga, näiteks pilt tuli udune, kaks erinevat objekti sulandusid info kogumisel üheks jne.
Tehnoloogial on keeruline tuvastada musta nahavärvi
Autonoomsusega on palju riske ja probleeme, aga inimeste, täpsemalt siis tumedamate, mitte tuvastamine on üks suurimaid. Tähendab seda, et autonoomsed sõidukid ei pruugi lahendada mustanahaliste kogukondade niigi suurt jalakäijate hukkunute arvu. Näo- ja keha tuvastus süsteemid ei tuvasta ega reageeri tumedamale naha värvile nii tihti, kui heledamale naha värvile. Seda tõestas uurin Georgia Techi poolt. Uurijad proovisid kaheksat erinevat pildituvastussüsteemi ja leiti, et need olid pidevalt kuskil viis protsenti vähem täpsemad, kui testiti naha tüüpe numbritega neli, viis ja kuus Fitzpatricku skaalal (skaala mida tihti kasutatakse masinõppes erinevate nahavärvide kontekstis)[10].
Asi ei ole kindlasti rassismis, vaid pigem kasutatavas tehnoloogias. Uurijad arvavad, et asi võib selles olla, et masinõppe treenimisel ei kasutata piisavalt tumedanahalisi inimesi ning üleüldiselt pööratakse nendele vähem tähelepanu. Ehk siis autonoomne auto päästab ennem heleda nahaga inimese kui tumedanahalise inimese, sest nende jalakäijate tuvastussüsteem on treenitud nägema rohkem heleda nahaga inimesi - algoritmid õpivad seda, mida neile "söödetakse". Kui näiteks ei ole piisavalt infot mustanahalise naise kohta, siis on masinal neid raske tuvastada kui need töösse pannakse [11].
Võimalikud lahendused
Lahenduseks on pakutud, et tiimid, kes arendavad neid algoritme, võiksid olla rassiliselt mitmekesisemad. Siis oleks ehk lihtsam treenida masinaid, ilma, et mingi rass oleks jälle katmata. See võibolla muudaks ka mentaliteeti, et tumedanahalised on vähem tähtsamad. Veel on variant, et sunniks firmasid testima ja demonstreerima enda algoritme, et need vastaksid teatud standarditele ennem kui need kasutusele võetakse. Demonstreerimine annaks esiteks võimaluse firmadel ennast tõestada, aga ka vigu tuvastada [11]. Autonoomsed sõidukid võivad saada iga päevaga targemaks, aga nad pole veel piisavalt targad et olla laialdaselt kasutusel.
Kasutatud materjalid
- ↑ 1.0 1.1 https://en.wikipedia.org/wiki/History_of_self-driving_cars
- ↑ https://apps.dtic.mil/dtic/tr/fulltext/u2/a167472.pdf
- ↑ https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
- ↑ https://web.archive.org/web/20120710202052/http://www.audiusa.com/us/brand/en/tools/news/pool/2010/07/new_look__reaffirmed.html
- ↑ https://www.accelerista.com/uudis/innovatsioon/isejuhtiva-soiduki-tasemed/
- ↑ 6.0 6.1 https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
- ↑ https://et.wikipedia.org/wiki/Radar
- ↑ https://et.wikipedia.org/wiki/Lidar
- ↑ https://www.tesla.com/models
- ↑ https://arxiv.org/pdf/1902.11097.pdf
- ↑ 11.0 11.1 https://www.vox.com/future-perfect/2019/3/5/18251924/self-driving-car-racial-bias-study-autonomous-vehicle-dark-skin