5G technology and it's development in Estonia: Difference between revisions

From ICO wiki
Jump to navigationJump to search
Line 14: Line 14:


==Architecture==
==Architecture==
5G is a wireless cellular network whose architecture can be generally explained as the main user 5G terminal and autonomous radio access technologies (RAT) in devices like Bluetooth, Wi-Fi, or GSM, which are connected to that terminal. Smartphones, IoT or applications connect to 5G with the help of RAT that has an IP link to access the internet. [11] It was designed like this to keep the data transmission under control and maintain correct routing of IP packets related to different application connections. If the previous mobile networks aimed only to provide efficient and secure connection service, 5G must also be flexible to support many technologies with different types of  applications. Therefore, 5G uses another architecture with Radio Access Networks (RAN) part of a mobile network. It is the component of a wireless mobile network which connects devices like smartphones or tablets to the cloud. [12] It is made when information is being sent from end-user devices to a RAN’s transceivers through radio waves.
3GPP supplies architecture of 5G network with complete specifications covering telecommunication technologies like RAN, core transport networks and service capabilities Additional design improvements like modularity, reusability and self-containment are taken into account and added to design for a 5G network architecture.[12]


==Technology==
==Technology==

Revision as of 16:32, 25 April 2022

5G technology and it's development in Estonia

Overview

Mobile networks, which have a 40-year history that parallels the Internet’s, have undergone significant change. The first two generations supported voice and then text, with 3G defining the transition to broadband access, supporting data rates measured in hundreds of kilobits-per-second. 4G supporting data rates typically measured in the few megabits-per-second. Today, the industry is at 5G, with the promise of a tenfold increase in data rates. But 5G is about much more than increased bandwidth. 5G represents a fundamental rearchitecting of the access network in a way that leverages several key technology trends and sets it on a path to enable much greater innovation. In the same way that 3G defined the transition from voice to broadband, 5G’s promise is primarily about the transition from a single access service (broadband connectivity) to a richer collection of edge services and devices.[1]

What is 5G?

5G (acronym of 5th Generation) indicates the set of fifth-generation mobile telephony technologies, which allow much higher performance and speed than current 4G technology. 5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices like smartphones, smartwatches and who knows what else… 5G wireless technology is meant to deliver higher multi-Gbps peak data speeds, ultra low latency, more reliability, massive network capacity, increased availability, and a more uniform user experience to more users. Beyond speed improvement, the technology is expected to unleash a massive 5G IoT (Internet of Things) ecosystem where networks can serve communication needs for billions of connected devices. [2] 5G networks are designed to account for such diverse needs. They can provide superfast access with minimal latency. At the same time, they retain the flexibility to provision slower speeds with lower device resource requirements.

How does 5G work?

Architecture

5G is a wireless cellular network whose architecture can be generally explained as the main user 5G terminal and autonomous radio access technologies (RAT) in devices like Bluetooth, Wi-Fi, or GSM, which are connected to that terminal. Smartphones, IoT or applications connect to 5G with the help of RAT that has an IP link to access the internet. [11] It was designed like this to keep the data transmission under control and maintain correct routing of IP packets related to different application connections. If the previous mobile networks aimed only to provide efficient and secure connection service, 5G must also be flexible to support many technologies with different types of applications. Therefore, 5G uses another architecture with Radio Access Networks (RAN) part of a mobile network. It is the component of a wireless mobile network which connects devices like smartphones or tablets to the cloud. [12] It is made when information is being sent from end-user devices to a RAN’s transceivers through radio waves.

3GPP supplies architecture of 5G network with complete specifications covering telecommunication technologies like RAN, core transport networks and service capabilities Additional design improvements like modularity, reusability and self-containment are taken into account and added to design for a 5G network architecture.[12]

Technology

Use cases

What are the differences between the previous generations of mobile networks and 5G?

Controversial moments

Is 5G Really Powerful Radiation?

This is a fairly popular conspiracy theory. Let's look at her key message: is 5G radiation really so powerful that it can cause any disease or harm health in any way?

To this question, would answer this way all electromagnetic radiation, from radio waves to X-rays, according to its energy (not power, these are different things) is divided into two types: ionizing, that is, capable of destroying molecules and turning them into ions, and non-ionizing - incapable on this. All 5G bands belong to the non-ionizing type of radiation, such radiation can only heat the living tissue through which it passes, but does not harm its molecules in any way and, as a result, does not affect the chemical processes in living organisms.

As a result, studies on the possible, hypothetical, potential and imaginary effects of non-ionizing radiation on living cells are constantly being conducted, but they have never yet given an unambiguous reproducible effect and have not presented a mechanism that would explain this effect. In short, today there is no reason to believe that 5G or any other radio emission can bring any significant harm to human health.

The 5G network spreads the coronavirus and leads to malignant tumors and other diseases. Could this be true?

Perhaps a repetition, but still. 5G refers to non-ionizing radiation, which cannot harm humans. Only ionizing radiation is dangerous: it penetrates the body and destroys cells, causes mutations and malignant tumors. For example, such radiation appears during the explosion of an atomic bomb.[1]

In conclusion, to stop the spread of similar myths in the future, experts need to consistently and clearly correct common misconceptions. And better transparency from both government bodies and researchers could prevent misinformation from ever taking root. [2]

5G development in Estonia

Let's start from the very beginning, for the development of new generation networks in Estonia, the following aspects must be fulfilled:

 *the state should allocate telecommunications enterprises the frequencies necessary for 5G;
 *in turn, telecommunications enterprises must build a 5G network (radio and core network);
 *working 5G terminals (smartphones and routers) should appear on the client device market;
 *telcos must bring 5G service packages to market. [1]

At first, the technological revolution in Estonia was slowed down, in Estonia, frequency auctions were postponed, and a number of operators decided to approach the construction of 5G networks without haste - this was due to the Covid-19 pandemic, which had a very impact on the development of 5G networks.

Nevertheless, on November 10, 2020, Telia opened the first 5G network in Estonia. Telia decided to smartly launch 5G services and started offering 5G on existing 4G frequencies using Ericsson DSS (Dynamic Spectrum Sharing) technology. In other words, we dynamically use the 4G radio frequency band to serve 5G network customers. [2]

On 16.12.2021, the government approved a decree on the security of communication networks, on the basis of which the Ministry of Economic Affairs and Communications will tender three licenses for the construction of fifth generation (5G) mobile networks in Estonia in February. The use of frequencies in the range of 3410-3800 megahertz will be divided into three equal parts with an interval of 130 megahertz. The starting price of each license is 1,597,000 euros. [3]

So far (04.05.2022), four bids have been submitted in the 5G license auction, the Consumer Protection and Technical Regulation Authority (TTJA) said. According to TTJA forecasts, the licenses submitted for the competition will be issued in June this year, after which telecommunications companies will be able to start building 5G networks in Estonia. [4]

The development of 5G infrastructure in Estonia is in full swing, although it has not yet been decided which 3 companies will develop this technology in Estonia, the largest telecommunications companies have already begun active preparation and implementation. 5G technology surpasses its 4G predecessor in many ways, offering up to 10 times faster connection speeds, up to 10 times lower latency, up to 100 times more IoT devices served, and up to 90% lower power consumption, which should lead to a new idea of ​​the Internet. [2]