SSD kettad

From ICO wiki
Jump to navigationJump to search

Täiendamisel...

Sissejuhatus

SSD (solid-state drive) ehk pooljuhtketas on mälukiipidel realiseeritud andmesalvestusseade, mis on otstarbelt võrreldav tavalise kõvakettaga (HDD), kuid põhineb välkmälu tehnoloogial ja pakub märgatavalt kiiremat andmepöördust.

Pooljuhtketaste valmistamisel kasutatakse mitut tüüpi mälukiipe, sealhulgas nii hävimälusid kui ka säilmälusid. Erinevalt tavapärastest kõvaketastest pole SSD sõna otseses mõttes üldse kettaseade, sest sellel puuduvad mehaaniliselt liikuvad osad, kuid ühendusliidesed on mõlemal samad ja täiendavaid draivereid pole SSD jaoks vaja - operatsioonisüsteem näeb ka pooljuhtketast tavalise kettana.[1] SSD on tänu liikuvate osade puudumisele vastupidavam põrutustele, ei tekita vibratsiooni ning töötab täiesti hääletult. SSD on ka palju energiasäästlikum ega kuumene üle. Seejuures on pooljuhtkettad aga tavalistest kõvaketastest seni veel märgatavalt kallimad. Miinuseks võib pidada sedagi, et välkmälu kirjutuskordade arv on piiratud, mis seab piirid SSD elueale, kuigi tavakasutajat see enamasti ei mõjuta.[2][3]

Tehnoloogia

Viimastel aastatel kasutatakse pooljuhtketastes valdavalt NAND-loogikal põhinevat välkmälu tehnoloogiat. Selle värskeim edasiarendus on kolmemõõtmelise arhitektuuriga V-NAND (vertical NAND) välkmälu, mis võimaldab suuremat andmetihedust ja töökiirust.[4] Eriotstarbeliselt on kasutusel ka suvapöördusmälul (RAM) põhinevad akutoitega pooljuhtkettad, mis pakuvad kiiremat andmepöördust, ent nende osakaal on üsna väike ja sihtturg spetsiifiline.[5]

Välkmälu (flash memory) on säilmälu, kus säilivad andmed ka pärast seda, kui toide on ära kadunud. Ehituselt kujutab välkmälu endast väikest trükkplaati, millele on monteeritud suure mahuga mälukiip.[6] Selle mõtles 1980ndatel aastatel välja Toshibas töötanud Fujio Masuoka.[7]

Tehnoloogiliselt arenesid välkmälukiibid välja EEPROMi kiibitehnoloogiast, kuid on odavamad ja suurema tihedusega. EEPROM (electrically erasable programmable read-only memory) on elektriliselt ümberprogrammeeritav püsimälu. Välkmälu erinevus seisneb selles, et kustutamine ja kirjutamine toimub väikeste andmeplokkide kaupa, EEPROMi puhul aga baitide kaupa.[8]

Välkmälu elementideks on ujuva paisuga väljatransistorid. Igas mäluelemendis hoitakse üht või enamat bitti. NAND-loogika kasutamine tähendab, et mälu on laetud siis, kui elemendi väärtus on 0 (ja laadimata väärtuse 1 korral).

Bittide arvust elemendis sõltub välkmälu kategooria:

  • SLC (single level cell) - üks bitt elemendis
  • MLC (multi level cell) - kaks või enam bitti elemendis
  • TLC (triple level cell) - kolm bitti elemendis

Mida vähem bitte elemendis, seda paremad on välkmälu omadused (kiirus, eluiga, tõrketaluvus), kuid samal ajal tähendab see ka kõrgemat hinda.

SLC võimaldab ligikaudu 90 000 - 100 000 kirjutuskorda, MLC ligikaudu 8000 - 10 000 ja TLC ainult 3000 - 5000 kirjutuskorda.[9]

Ka kirjutamiskiirus langeb elemendis hoitavate bittide arvu suurenedes märgatavalt, sest kirjutamine toimub välkmälus tavaliselt plokikaupa ja enne andmete ülekirjutamist tuleb tavaliselt terve plokk vahemällu salvestada. SSD seadmetel on välkmälu spetsiifikast tingituna palju keerukamad kontrollerid kui tavaketastel ja seadme jõudlus sõltub paljuski just kontrolleri võimekusest, mistõttu ei kipu tootjad nende kohta väga palju infot välja jagama.[10]

Massitootoodanguna valminud odavamates SSD seadmetes on tavaliselt TLC välkmälu, samas kui SLC on kasutusel tippklassi mälukaartides ja serverites. MLC jääb omadustelt nende kahe vahele, aga sedagi peetakse pigem tavatarbijale suunatud tehnoloogiaks. Ettevõtetele on mõeldud eMLC (enterprise multi level cell), mis on sisuliselt optimeeritud MLC versioon ja võimaldab 20 000 - 30 000 kirjutuskorda.[11]

Kasutusalad

SSD vs. HDD

SSD ja HDD kõvakettaid on võrdlemisi raske võrrelda. Üks põhjustest on see, et tavaliste ketaste (HDD) jõudlustestid panevad rõhku nõrkuste võrdlemisele, milleks on latentsus-ja otsinguajale. Keeruliseks teeb võrdluse aga see, et SSD ketaste sees pole liikuvaid osi mis tähendab, et SSD kettad on selle koha pealt HDD'dest peajagu üle. Tänu SSD ketaste sega lugemise-kirjutamise tõttu võib nende jõudlus aja jooksul degrareeruda.

Omadus SSD HDD
Ketta pöörete üles jõudmise aeg Kohene Aega võib kuluda mitu sekundit.
Suvapöördumise aeg Umbes 0,1 ms. kuna andmete poole pöördutakse otse välkmälust. Umbes 5–10 ms kuna on vaja liigutada päid ja oodata kuni andmed liiguvad lugemis-/kirjutamispea all.
Lugemise latentsusaeg Üldiselt madal, sest andmeid saab lugeda otse ükskõik millisest kohast. Üldiselt kõrge, kuna mehhaanilised osad vajavad joondumiseks lisa aega.
Pideva lugemise jõudlus Lugemise jõudlus ei muutu vastavalt sellele, kus info SSDl paikneb. Kui andmed on fragmenteerunud, siis info välja lugemine võib anda erinevaid vastamis-aegu.
Defragmentatsioon Puudub defragmentatsioon, sest sellel on SSD-dele minimaalne effekt. Iga defragmentatsiooni protsess lisab uusi kirjutamisi NAND välkmälule, millel on niigi piiratud eluiga. HDDd vajavad defragmentatsiooni pärast kestvat töösolekut või info kustutamist ja kirjutamist.
Müratase Müra puudub. HDD-del on liikuvad osad(pead, mootor) ja tekitavad erineval tasemel müra olenevalt mudelist.
Mehhaaniline vastupidavus Liikuvate osade puudumine praktiliselt eemaldab mehhaanilised rikked. HDD-del on mitmeid liikuvaid osi, mis kõik ütlevad aja jooksul üles.
Vastupidavus löökidele, rõhule, vibratsioonile ja äärmuslikele temperatuuridele Väga vastupidav. Lendavad pead ja pöörlevad kettad on üldiselt selliste äärmuslikele situatsioonidele vastuvõtlikud.
Magneetiline tundlikkus Ei mõjuta välkmälu. Magnetid või magnetimpulsid mõjutavad andmeid kettal.
Kaal ja maht Välkmälu ja trükiplaadi materjal on väga kerged võrreldes HDD-dega. Tippjõudlusega HDDd kasutavad raskemaid komponente kui sülearvuti kõvakettad, mis on kerged, kuid mitte samal määral kui pooljuhtkettad.
Paralleelsed operatsioonid Mõneded välkmälu kontrolleritel võib olla mitu välkmälu kiipi kirjutamas ja lugemas erinevat infot samal ajal. Kõvaketastel on mitu pead, kuid need peavad kõik ühel samal silindril (rajal) joondatud olema.
Kirjutuskindlus Pooljuhtkettad, mis kasutavad välkmälu on piiratud arv kordi kirjutatavad. Pole limiteeritud arv kirjutuskordi.
Tarkvara enkrüpteeringu piirangud NAND välkmälu ei saa üle kirjutada, selle asemel tuleb ümber kirjutada eelnevalt kustutatud blokkidesse. Kui tarkvaralise krüpteeringu programm krüpteerib juba SSDl paiknevat infot, siis "üle kirjutatud" andmed on ikka kaitsmata, krüpteerimata ja andmevargale kättesaadav (kettal-põhineval riistvarakrüpteeringu puhul seda probleemi ei esine). Lisaks ei saa andmeid turvaliselt kustutada kirjutades algseid andmeid üle kirjutades ilma kettasse sisse-ehitatud eriliste "Secure Erase" protseduurideta. HDDd saavad andmed otse ükskõik millises sektoris üle kirjutada.
Free block availability and TRIM Oleneb plokkidest. Kasutuses mitteolevad andmeplokid võetakse kasutusele TRIM'i poolt. HDDd ei ole mõjutatud vabadest blokkidest või TRIM funktsionaalsuse( puudumise)st.
Energiakasutus Tippjõudluse välkmälul põhinevad pooljuhtkettad kasutavad tavaliselt ainult 1/3 kuni 1/2 voolust, mis kulub HDD-dele. Tippjõudluse DRAM SSDd vajavad tavaliselt sama palju elektrit kui HDDd ja vaajavad voolu ka siis kui ülejäänud süsteem on välja lülitatud.. Tippjõudluse HDDd vajavad tavaliselt 12-18 vatti, sülearvutitele mõeldud kettad kasutavad tavaliselt 2 vatti.

Kokkuvõte

SSD kettad on välkmälul põhinevad andmekandjad. Nad on pea igas aspektis tavalistest HDD'dest peajagu üle. Plussideks on parem lugemis/kirjutamiskiirus, programmid avanevad kiiremini, vaiksus, päringutele reageerimine, kiirem failide kopeerimine, vähene energiakasutus, puuduvad liikuvad osad, vastupidavam. Suurimaks miinuseks on aga paraku hind.

Kasulikke linke

Autorid

Andres Sumin, A32 (asumin@itcollege.ee)
Täiendanud: Oliver Tiks, AK21 (2015/2016)

Viited