IKT ja keskkonna jalajälje seosed: Difference between revisions

From ICO wiki
Jump to navigationJump to search
mNo edit summary
No edit summary
Line 66: Line 66:
=IKT seadmete tootmise ja tarbimisega tekkivad jäätmed=
=IKT seadmete tootmise ja tarbimisega tekkivad jäätmed=


=IKT positiivne mõju: kasutamine keskkonnaseire läbiviimisel=
=IKT kasutamine keskkonnaseire läbiviimisel=
 
Eesti keskkonnaseire seaduse kohaselt on keskkonnaseire kogum tegevustest, mis võimaldavad keskkonnaseisundit ja seda mõjutavaid tegureid järjepidevalt jälgida. Keskkonnaseire sisaldab muuhulgas vaatlusandmete kogumist, töötlemist ja säilitamist, tulemuste analüüsimist ning ja selle baasilt muutuste prognoosimist. Eesmärgiks on saada selge ülevaade keskkonnaseisundist ja selle muutustest väljaspool otsest inimtegevuse mõju piirkonda. See informatsioon on omakorda sisendiks erinevate tegevus-, arengu- ja korralduskavade koostamiseks ja nende mõju hindamiseks <ref name=seire>Keskkonnaministeerium, "Keskkonnamõju ja seire" [www] https://envir.ee/keskkonnakasutus/keskkonnaseire. Kasutatud: 15.04.2023.</ref>.
 
Infotehnoloogia (IKT) mängib keskkonnakaitse korraldamisel järjest olulisemat rolli, kuna tänu IKT vahenditele on võimalik koguda, hallata ja analüüsida suurt kogust informatsiooni <ref name=roberts> Roberts, S., „Measuring the Relationship between ICT and the Environment", ''OECD Digital Economy Papers. No. 162, OECD Publishing, Paris.'' (2009) doi: https://doi.org/10.1787/221687775423. Kasutatud: 15.04.2023.</ref>. IKT vahendid võimaldavad väga mitmesuguste keskkonnanäitajate jälgimist õhus, vees ja pinnases nii looduslikes, põllumajanduslikes kui ka linnaökosüsteemides <ref name=parra> Parra, L. „Remote Sensing and GIS in Environmental Monitoring“, ''Appl. Sci., 12, 8045. '' (2022). doi: https://doi.org/10.3390/app12168045. Kasutatud: 15.04.2023.</ref>.
 
Lisaks võivad IKT vahendid aidata ka keskkonnakriiside ennetamisel ja lahendamisel. Näiteks võivad nad aidata tuvastada looduskeskkonnas toimuvaid tulekahjusid ning jälgida nende keskkonnamõju <ref name=lloret> Lloret, J.; Garcia, M.; Bri, D.; Sendra, S., „. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification“, ''Sensors , 9, 8722-8747'' (2009). doi: https://doi.org/10.3390/s91108722. Kasutatud: 15.04.2023.</ref> ning jälgida tormide kulgu merel ja ennustada nende poolt rannikupiirkondades tekitatud kahju <ref name=fortelli> Fortelli, A.; Fedele, A.; De Natale, G.; Matano, F.; Sacchi, M.; Troise, C.; Somma, R., „Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy,“  ''Appl. Sci. 11, 11460. '' (2021). doi: https://doi.org/10.3390/app112311460. Kasutatud: 15.04.2023.</ref>. Samuti võimaldavad IKT meetodid koguda kiiresti andmeid keskkonnakriisi ulatuse hindamiseks ja võimaldada tõhusat ja koordineeritud reageerimist <ref name=lloret/>.
 
===GIS===
Viimastel aastakümnetel on geoinfosüsteemist (GIS) saanud hinnatud tööriist keskkonnaseire ja -analüüsi läbiviimisel <ref name=parra/>. GISi vaadeldakse kui süsteemi, mis koosneb riisvarast, tarkvarast, andmetest, inimestest  ja protseduuridest. Põhiline erinevus teistest infosüsteemidest on GISis sisalduva info seotus geograafilise asukohaga. Tänu sellele võimaldab GIS ruumiliste andmete kogumist, töötlemist, analüüsi ja esitamist temaatiliste  kaartidena <ref name=zhu> Zhu, X., „GIS for Environmental Applications - A Practical Approach“  '' Routledge'' (2016). Kasutatud: 15.04.2023.</ref>.
 
GISi operatsioon võtab sisendiks mingid andmehulgad (näiteks kaardid) ja produtseerib väljundina uue kaardi. Tänapäeval on lisaks traditsioonilistele tasapinnalistele 2D kaartidele võimalik luua GISi abil 3D kaarte, mis on animeeritud ja interaktiivsed. Paljudel GIS süsteemidel on lisaks traditsioonilisele graafilisele kasutajaliidesele ka programmeerimisliides, mis võimaldab luua kaskkonnaandmete analüüsiks ja modelleerimiseks spetsiifilisi tööriistu erinevate programmeerimiskeelte (Visual Basic (VB), C++, C#, Java, Python, VBScript and JavaScript) abil <ref name=zhu/>.
 
GISi abil saab kuvada erinevaid keskkonnategureid kaardil ning asetada erinevaid kaardikihte tarkvara abil üksteise peale, mis võimaldab analüüsida erinevate tegurite vahelisi seoseid. See omakorda aitab paremini mõista keskkonna seisundit ja selles toimuvaid muutusi. Samuti saab GISi abil hinnata erinevate tegevuste mõju keskkonnale ning planeerida ja jälgida keskkonnakaitse meetmeid <ref name=zhu/>.
 
===Kaugseire===
 
Kaasaegseid GIS süsteeme kasutatakse üheskoos kaugseire tehnoloogiaga, et jälgida keskkonnamuutusi ajas ja ruumis. Traditsiooniliselt  on keskkonnaseire puhul kasutatud satelliitidelt ja lennukitest tehtavad elektromagnetkiirguse mõõtmiseid. Lisaks aerofotodele on kasutusel radari ja infrapuna ülesvõtted, multi- ning hüperpektraalsed kujutised ja LiDAR instrumentidega saadud punktipilv <ref name=zhu/>.
 
Viimastel aastatel on järjest enam hakatud kasutama ka mehitamata õhusõidukeid ehk droone (UAV). UAVde eeliseks on saadud kujutise kõrge resolutsioon ja paindlikkus kordusmõõtmiste ajastamisel, probleemidena võib välja tuua nende kõrge hinna ja regulatoorsed piirangud nende ülesvõtete kasutamisel. Praegu on kaugseire droonid enamaltjaolt inimese poolt kaugelt juhitud. Autonoomsete sõidukite kiire areng toob tulevikus tõenäoliselt kaasa ka autonoomselt lendavad ja informatsiooni koguvad UAVd. Tehisintellekti kasutamine võimaldab neil reguleerida ise oma kiirust  ja kõrgust maapinnast, võttes  reaalajas arvesse juba kogutud informatsiooni <ref name=parra/>.
 
Keskkonnaseire läbiviimisel on kasutusel ka juhtmevaba sensorvõrk (WSN), mis koosneb mitmetest väikestest seadetest (sensoritest), mis mõõdavad keskkonnaparameetreid. Kuna sensorid ise on piiratud võimsuse ja mäluga, saadavad nad oma mõõtmised tavapäraselt kesksesse serverisse, kus toimub andmete töötlemine. Paljudest sensoritest moodustub võrk, mis võimaldab keskkonnaparameetrite muutust ajas järgida, näiteks on seda võimalik rakendada tulekahjude tuvastamisel <ref name=lloret/>.
 
===Andmekogud Eestis===
 
Eestis viikse riikliku keskkonnaseire programmi abil muu hulgas läbi meteoroloogilist ja hüdroloogilist seiret, välisõhu, metsa, mulla, põhja- ja pinnavee seiret ning elustiku mitmekesisuse ja maastike seiret <ref name=seire/>. Keskkonnaseire käigus saadud andmed on talletatud Eesti keskkonnaseire andmekogusse (KESE). Lisaks otsestele seiretulemustele salvestatakse ka info seirekoha (seirejaama, -ala või -koha asukoht, pindala, kõrgus/sügavus, seotud objektid), parameetrite (metoodika, ühik) ja seireprogrammide (kuuluvus, kehtivus, läbiviijad) kohta <ref name=kese>Keskkonnaministeerium, "KESE" [www] https://kese.envir.ee/. Kasutatud: 15.04.2023.</ref>.
 
KESE andmekogu on omakorda seotud Keskkonnaagentuuri poolt hallatava andmekoguga Eesti looduse infosüsteem (EELIS), mis koosneb keskses serveris töötavast PostgreSQL geoandmebaasist ja kasutaja töökohapõhisest rakendusest. Osa EELISes hoitavatest andmetest on läbi Keskkonnaportaali vabalt kättesaadavad, sealhulgas hulgas Eestis kaitstavad alad ja üksikobjektid, Eestis leiduvad liigid, veekogud, saared ja kaitsekorralduskavad. Lisaks sisaldub EELIS programmis veel mitmesuguseid andmestikke, millele on võimalik Keskkonnaagentuuri poole pöördudes ligipääsu saada <ref name=eelis> Keskkonnaagentuur, "EELIS Infoleht" [www] https://infoleht.keskkonnainfo.ee/default.aspx?id=-924928823&state=2;-924928823;est;eelisand. Kasutatud: 15.04.2023.</ref>. KESE on seotud ka e-elurikkuse andmekoguga PLUTOF, mis võimaldab loodusvaatlejatele oma vaatlusandmete sisestamist <ref name=plutof> Tartu Ülikooli loodusmuuseum ja botaanikaaed, "eElurikkus" [www] https://elurikkus.ee/observations/add. Kasutatud: 15.04.2023.</ref>.


=Elustiili ja harjumuste mõju keskkonna jalajäljele IT alal=
=Elustiili ja harjumuste mõju keskkonna jalajäljele IT alal=

Revision as of 17:50, 15 April 2023

Sissejuhatus

Laias laastus jagunevad IT ja keskkonnajalajälje omavahelised seosed kaheks: IT mõjub keskkonnale kas positiivselt või siis negatiivselt. Mõjud jagunevad omakorda ka veel kaheks: otsesteks ja kaudseteks mõjudeks. Lisaks on olemas veel kolmanda järgu mõjud, mis on valdavalt ootamatud negatiivsed tagajärjed (ingl k systemic effect või rebound effect) positiivsetele arengutele (nt. energiatarbimise vähenemisest tingitud energiahindade langus omakorda innustab tarbijaid energiatarbimist suurendama). Kolmanda järgu mõjuna võib käsitleda ka elustiili muutusi, mis on positiivse iseloomuga.[1]

IKT mõju CO2 emissioonile

Ülevaade IKT lahenduste mõjust CO2 emissioonile

Kuna ühiskonnana oleme me üha rohkem sõltuvad IKT lahendustest, siis on oluline aru saada, milline on IKT mõju CO2 emissioonile, et leida kõige efektiivsemad lahendused võitlemaks kliimamuutustega. Erinevad uuringud näitavad, et IKT lahenduste tootmine, kasutamine ja nende kasutusest kõrvaldamine võib mõjutada CO2 emissioone nii positiivselt kui negatiivselt. Positiivsete mõjude tagajärjel tuleb arvestada ka võimalike tagasilöögiefektidega (ingl k rebound effect).

  1. Positiivne mõju. Kui vaadata CO2 emissiooni ühiskondades, kus IKT lahendused on rahvastiku seas levinumad, siis võib täheldada, et IKT mõju on tervikuna positiivne emissiooni vähendamisele. Näiteks Auci ja Becchetti [2] poolt läbi viidud analüüsis vaadeldakse 197 riigi 42 aasta majandusarengu andmeid (ingl k World Development Indicators (WDI)) aastatel 1960-2001 ning tuuakse välja statistiliselt olulisi korrelatsioone CO2 emissiooni ja erinevate ühiskonna jõukust iseloomustavate näitajate vahel. Ühe näitajana võrreldakse riikide raadiohäälingu ja telefoniside leviku ulatust ning leitakse, et sellel on positiivne mõju CO2 emissiooni vähendamisele. See toetab hüpoteesi, et mida rohkem on ühiskonnas levinud IKT lahendused, seda vähem on vaja toota koopiaid nn. mittekonkureerivatest toodetest (ingl k non-rivalrous goods) – näiteks tarkvara, mille ühte eksemplari võib (taas)tarbida kuitahes palju inimesi – ja seega on nendes ühiskondades väiksem CO2 emissioon.
  2. Negatiivne mõju. IKT-st ei saa rääkida kui ainult CO2 emissiooni vähendajast. IKT sektor tervikuna omab ka märkimisväärset keskkonna jalajälge. Erinevatel hinnangutel [3] moodustab IKT sektori kasvuhoonegaaside emissioon 1,8-2,8% või suisa 2,1-3,9% globaalsest emissioonist. Selline mõju tekib peamiselt IKT seadmete tootmisele kuluva energia ja materjalide kasutamise tagajärjel ning ka IKT seadmete kasutusest kõrvaldamise tulemusena.
  3. Tagasilöögiefektid. Tuleb meelest pidada, et CO2 emissiooni vähendamine võib kaasa tuua ka tagasilöögiefekte. Näiteks pika perspektiiviga (aastani 2100) tehtud arengustsenaariumite mudeldamine Moyer ja Hughes [4] poolt näitab, et kuigi IKT-l on tugev potentsiaal omada positiivset mõju CO2 emissiooni vähendamisele, siis selle mõju püsimist ohustab energiahindade langusest tulenev tagasilöögiefekt, kuna energiahindade vähenedes hakkab energiatarbimine kasvama ja seeläbi ka CO2 emissioon tõusma. Uuringu autorid leiavad, et ei piisa üksnes IKT lahenduste kasutuselevõtust, mis aitaks taastuvenergia hindu alla tuua, vaid seda tuleb täiendada ka tarbimist vähendava süsiniku hinnaga.

Higón jt. [5] on uurinud 142 riigi 1995-2010 aastate majandusarengu ja IKT lahenduste leviku andmeid ning avastanud huvitava seaduspära, et majanduslikult kehvemal järjel olevates riikides mõjuvad IKT lahendused CO2 emissioonile suurenevalt ning kõrgema majandusarenguga riikides vähendavalt. Sellest võib järeldada, et IKT sektori ja majanduse kui terviku arenedes muutub lihtsamaks ka CO2 emissiooni vähendamine.

CO2 emissioone vähendavad IKT süsteemid

Nutikad transpordisüsteemid

Nutikad transpordisüsteemid (ingl k Intelligent Transport Systems (ITS)) võivad vähendada sõidukite poolt tekitavat õhusaastet, muutes juhtide käitumist ning pakkudes teadlikumatele sõidukijuhtidele võimalusi vähem keskkonda saastavaks liiklemiseks. Monzoni jt. ettekandes [6] tutvustatakse Madridis 2013. aasta aprillis tehtud uuringut, milles selgusid mitmed CO2 emissiooni vähendamisele positiivselt mõjuvad IKT lahendused:

  1. Keskmise kiiruse mõõtmine teelõigul (ingl k Section Speed Control) - tegemist on ennekõike liiklusohutuse meetmega, kuid uuring näitab ka selle positiivset mõju CO2 emissiooni vähendamisele tänu ummikute tekkimise ennetamise võimalusele. Süsteem koosneb teelõigule sisenevatest ja sellelt väljuvatest automaatsetest numbrituvastussüsteemidest, mis mõõdavad sõiduki keskmist kiirust sellel teelõigul. Kiiruseületajaid karistatakse trahviga.
  2. Muutuvad kiiruspiirangud (ingl k Variable Speed Limits) - kiiruspiirangute haldamise süsteemid, mis võimaldavad ajutiselt muuta mõne teelõigu piirkiirust vastavalt tegelikele liiklusoludele ning vähendada seeläbi ummikute teket.
  3. Püsikiiruse hoidja (ingl k Cruise Control) - tegemist on sõidukijuhi enda poolt aktiveeritava süsteemiga, mis hoiab sõiduki kiirust püsivalt samal kiirusel ning hoiab seeläbi ära äkilisi kütusekulukaid kiiruse muutumisi. Sellel süsteemil on positiivsed mõjud CO2 emissiooni vähendamisele pikemate teelõikude puhul.
  4. Rohenavigeerimine (ingl k Green Navigation) - tegemist on lahendusega, kus sõidukijuhid valivad navigatsioonisüsteemi poolt pakutavatest valikutest sellise, mis minimeerib CO2 emissioone.

Üllataval kombel ei kinnitanud uuring säästvaid sõidustiile (ingl k Eco-driving) toetavate süsteemide positiivset mõju CO2 emissioonile - pigem vastupidi, simulatsioonid näitasid, et suurema liiklusega piirkondades säästvaid sõidustiile evivate sõidukijuhtide arvu kasvades mõjub see CO2 emissioonile kasvavalt, kuna see soodustab ummikute teket.

Sõidujagamine ja sõidukite ühiskasutus

Kui nutikad transpordisüsteemid vähendavad juba kasutuses olevate sõidukite poolt tekitatavat õhusaastet, siis sõidujagamine ja sõidukite ühiskasutus võimaldab vähendada õhusaastet seeläbi, et väheneb sõidukite kasutus kui selline. Stewart'i [7] poolt tehtud Šotimaa 2007-2027 aastate liiklusandmete modelleerimine näitab, et mobiilsed sõidujagamise ja sõidukite ühiskasutust võimaldavad IKT lahendused suurendavad sõidukite täituvust tänu millele väheneb üldine sõidukite kasutus, mis toob kaasa CO2 emissiooni vähenemise. Kusjuures samas uuringus modelleeritud andmed ei näidanud olulist CO2 vähenemist tänu rakendustele, mis aitavad vähendada transpordile kuluvat aega läbi erinevate transpordivahendite nutika ristkasutuse.

Pilvtöötlus

Pilvtöötluse (ingl k cloud computing) positiivsed mõjud CO2 emissiooni vähendamisele tulenevad selle võimekusest optimeerida andmetöötlusele kuluvate ressursside kasutust läbi nende jagatud kasutuse. Chowdhury [8] uuringus on välja toodud järgmised pilvtöötluse positiivsed efektid, mis tekivad tänu sellisele jagatud ressursside kasutamisele:

  1. Serveri energiakulu vähendamine. Võimalik tänu andmetöötluse ooteolekute plaanimisele (ingl k sleep scheduling) ja ressursside virtualiseerimisele.
  2. Andmevõrgu energiakulu vähendamine. Võimalik tänu mastaabisäästule, mis tekib suuremahulise võrguliikluse puhul.
  3. Kliendi poolne energiakulu vähendamine. Võimalik tänu kõhnade klientide (ingl k thin client) kasutuselevõtule, mille puhul suurem osa energiamahukast andmetöötlusest toimub keskses andmekeskuses.

IKT mõju elektrieneria tarbimisele ja hinnale

PLAAN: “ICT increases energy consumption”. Vaataks aga seda natuke laiemalt jalajälje mõttes. Ehk siis, mitte, et lihtsalt tarbitakse palju ja tulevikus rohkem ja oi mis see kõik hindadega teeb. Vaid veidi ka mõju keskkonnale. Näiteks suured andmekeskused kellel tihti on oma elektrijaamad etc. Ja kas seda saaks ka kuidagi ühiskondlikult kasulikult tööle panna.

IKT sektori seadmete arvu kasv mõjutab tarbimist…

IKT Suurtarbijad (andmekeskused, cloud) nende energiavajadus ja jalajälg keskkonnale

Internetikasutajate hulk on aastast 2010 rohkem kui kahekordistunud ning ülemaailmne internetiliiklus on selle ajaga kasvanud 20 korda. Kasvab nõudlus digitaalsete teenuste järgi ja majandus muutub järjest seotumaks nende teenustega. See kõik on kaasa toonud suurenenud vajaduse uute andmekeskuste rajamiseks üle maailma. Majandus ja IKT sektor sõltuvad andmekeskusetest, samas andmekeskused tarbivad suures koguses elektrienergiat ja aitavad kaasa globaalsele soojenemisele ja saastamisele.[9]

Aastal 2021 tarbisid andmekeskused umbes 1-1,5% kogu maailma elektrienergiast, millega kaasnes 300Mt CO2 kasvuhoonegaaside heitmeid (umber 0,9% energia sektoriga seotud heitmekogustest). Kuigi tänu energiasäästvamate tehnoloogiate ja jahutuseseadmete kasutuselevõtuga on energiatarbimise kasvu suudetud pidurdada, on siiski riike, kus see pole nii hästi õnnestunud. Näiteks Iirimaal on aastast 2015 elektrienergia tarbimine kasvanud kolm korda ning aastaks 2021 ulatus 14% kogu energiatarbimisest. Aastaks 2030 võib see ulatuda juba 24 protsendini. Taanis prognoositakse sarnast kasvu - aastaks 2025 võib see kasutada 7% riigis tarbitavast elektrienergiast. Viimased prognoosid on seotud eelkõige uute pilvetehnoloogiate andmekeskuste rajamisega.[9]

IKT sektori andmekeskuste elektrienergia tarbimise kasv tekitab vastuolu keskkonna ja majanduse eesmärkide vahel. Näiteks Iirimaale on majanduslikult oluline, et rajataks uusi andmekeskuseid, sest see soodustab tehnoloogiasektori arengut. Samas kaasnevad andmekeskuste arvu kasvuga raskused energiaeesmärkide täitmisel. Iirimaa on juba nüüd üks Euroopa suurimaid süsinikdioksiidi heitkoguste põhjustajaid ja selle eest võivad teda oodata trahvid üle 250 miljoni euro. [10]

Lisaks tekitab andmekeskuste elektrienergia tarbimise kasv Iirimaal energia nappuse ja tõstab energiahinda tavatarbija jaoks. Riigifirma EirGrid väitel tarbisid Iiri andmekeskused viimase nelja aasta jooksul sama palju energiat kui ligi pool miljonit kodumajapidamist. Positiivse poole pealt on energianappus toonud kaasa vajaduse andmekeskuse operaatoritel otsida säästvamaid ja keskkonnasõbralikemaid lahendusi. Tulevikus võivad andmekeskused kasutada rohkem taastuvenergiat, energiasalvestust, mikrovõrke ja teisi tehnoloogiaid, et vähendada koormust kohalikele võrkudele.[11][12]

Elektrienergia nappuse tekitamine andmekeskuste poolt ei ole ainult Iirimaa probleem. Sarnase probleemiga on kokku puutunud ka teised riigid. Näiteks Norras on andmekeskuste tarbimine hakanud pärssima muu tööstuse arengut. Euroopa suure laskemoona tootja Nammo laienemine sattus 2023. aastal ohtu, kuna TikToki andmekeskusele Norras oli lubatud ära kasutada kogu piirkonda planeeritud elektrienergia. See on tekitanud küsimuse, kas valitsus peaks sekkuma, et jaotada energiat tööstusharude vahel vastavalt riiklikele prioriteetidele.[13]

Ligikaudu kolm neljandikku kogu inimkonna poolt toodetud energiast raisatakse jääksoojusena. Andmekeskustes töötavad seadmed eraldavad samuti oma töö käigus soojust. Seadmete tööshoidmise tagamiseks on vaja soojus ära juhtida või jahutada. See kõik tarbib omakorda energiat. [14]


Ettevõtted otsivad uuenduslikke tehnoloogiaid, et tekkivat jääksoojust saaks taaskasutada energiaallikana. Näiteks on hakanud andmekeskused pakkuma jääksoojust lähedal asuvatele kogukondadele elamu- ja kommertskütte eesmärgil. Facebooki andmekeskus Taanis peaks jääksoojust kasutades aitama soojana hoida umbes 7000 kodu. [14]


Üks näide jääksoojuse kasutuse potentsiaalist on ka Ühendkuningriigist, kus pesumasina suuruse andmekeskuse tekitatud jääksoojust kasutatakse Devonis asuva avaliku ujula soojendamiseks. Süsteemis püütakse kinni jääksoojus, mida on piisavalt, et soojendada basseini umbes 30°C-ni 60% ajast. Säärane lahendus võimaldab basseini soojendamiseks säästa tuhandeid naelu (soojusenergia antakse ujulale tasuta).[15]

Andmekeskustega kaasnevate keskkonnamõjudega tegelemiseks on algatatud liikumine Kliimaneutraalsed andmekeskused. Kliimaneutraalsete andmekeskuste pakt on algatus, mille eesmärgiks on muuta andmekeskused keskkonnasõbralikumaks ja kliimaneutraalsemaks. Sellega on plaanis aidata kaasa Euroopa Liidu roheleppe eesmärkide saavutamisele ning vähendada IKT sektori keskkonnamõju. Paktiga võtavad andmekeskused omale kohustuse vähendada süsinikdioksiidi heitkoguseid, kasutada puhtaid ja taastuvaid energiaallikaid ning jääksoojuse taaskasutust.[16]

IKT seadmete tootmise ja tarbimisega tekkivad jäätmed

IKT kasutamine keskkonnaseire läbiviimisel

Eesti keskkonnaseire seaduse kohaselt on keskkonnaseire kogum tegevustest, mis võimaldavad keskkonnaseisundit ja seda mõjutavaid tegureid järjepidevalt jälgida. Keskkonnaseire sisaldab muuhulgas vaatlusandmete kogumist, töötlemist ja säilitamist, tulemuste analüüsimist ning ja selle baasilt muutuste prognoosimist. Eesmärgiks on saada selge ülevaade keskkonnaseisundist ja selle muutustest väljaspool otsest inimtegevuse mõju piirkonda. See informatsioon on omakorda sisendiks erinevate tegevus-, arengu- ja korralduskavade koostamiseks ja nende mõju hindamiseks [17].

Infotehnoloogia (IKT) mängib keskkonnakaitse korraldamisel järjest olulisemat rolli, kuna tänu IKT vahenditele on võimalik koguda, hallata ja analüüsida suurt kogust informatsiooni [18]. IKT vahendid võimaldavad väga mitmesuguste keskkonnanäitajate jälgimist õhus, vees ja pinnases nii looduslikes, põllumajanduslikes kui ka linnaökosüsteemides [19].

Lisaks võivad IKT vahendid aidata ka keskkonnakriiside ennetamisel ja lahendamisel. Näiteks võivad nad aidata tuvastada looduskeskkonnas toimuvaid tulekahjusid ning jälgida nende keskkonnamõju [20] ning jälgida tormide kulgu merel ja ennustada nende poolt rannikupiirkondades tekitatud kahju [21]. Samuti võimaldavad IKT meetodid koguda kiiresti andmeid keskkonnakriisi ulatuse hindamiseks ja võimaldada tõhusat ja koordineeritud reageerimist [20].

GIS

Viimastel aastakümnetel on geoinfosüsteemist (GIS) saanud hinnatud tööriist keskkonnaseire ja -analüüsi läbiviimisel [19]. GISi vaadeldakse kui süsteemi, mis koosneb riisvarast, tarkvarast, andmetest, inimestest ja protseduuridest. Põhiline erinevus teistest infosüsteemidest on GISis sisalduva info seotus geograafilise asukohaga. Tänu sellele võimaldab GIS ruumiliste andmete kogumist, töötlemist, analüüsi ja esitamist temaatiliste kaartidena [22].

GISi operatsioon võtab sisendiks mingid andmehulgad (näiteks kaardid) ja produtseerib väljundina uue kaardi. Tänapäeval on lisaks traditsioonilistele tasapinnalistele 2D kaartidele võimalik luua GISi abil 3D kaarte, mis on animeeritud ja interaktiivsed. Paljudel GIS süsteemidel on lisaks traditsioonilisele graafilisele kasutajaliidesele ka programmeerimisliides, mis võimaldab luua kaskkonnaandmete analüüsiks ja modelleerimiseks spetsiifilisi tööriistu erinevate programmeerimiskeelte (Visual Basic (VB), C++, C#, Java, Python, VBScript and JavaScript) abil [22].

GISi abil saab kuvada erinevaid keskkonnategureid kaardil ning asetada erinevaid kaardikihte tarkvara abil üksteise peale, mis võimaldab analüüsida erinevate tegurite vahelisi seoseid. See omakorda aitab paremini mõista keskkonna seisundit ja selles toimuvaid muutusi. Samuti saab GISi abil hinnata erinevate tegevuste mõju keskkonnale ning planeerida ja jälgida keskkonnakaitse meetmeid [22].

Kaugseire

Kaasaegseid GIS süsteeme kasutatakse üheskoos kaugseire tehnoloogiaga, et jälgida keskkonnamuutusi ajas ja ruumis. Traditsiooniliselt on keskkonnaseire puhul kasutatud satelliitidelt ja lennukitest tehtavad elektromagnetkiirguse mõõtmiseid. Lisaks aerofotodele on kasutusel radari ja infrapuna ülesvõtted, multi- ning hüperpektraalsed kujutised ja LiDAR instrumentidega saadud punktipilv [22].

Viimastel aastatel on järjest enam hakatud kasutama ka mehitamata õhusõidukeid ehk droone (UAV). UAVde eeliseks on saadud kujutise kõrge resolutsioon ja paindlikkus kordusmõõtmiste ajastamisel, probleemidena võib välja tuua nende kõrge hinna ja regulatoorsed piirangud nende ülesvõtete kasutamisel. Praegu on kaugseire droonid enamaltjaolt inimese poolt kaugelt juhitud. Autonoomsete sõidukite kiire areng toob tulevikus tõenäoliselt kaasa ka autonoomselt lendavad ja informatsiooni koguvad UAVd. Tehisintellekti kasutamine võimaldab neil reguleerida ise oma kiirust ja kõrgust maapinnast, võttes reaalajas arvesse juba kogutud informatsiooni [19].

Keskkonnaseire läbiviimisel on kasutusel ka juhtmevaba sensorvõrk (WSN), mis koosneb mitmetest väikestest seadetest (sensoritest), mis mõõdavad keskkonnaparameetreid. Kuna sensorid ise on piiratud võimsuse ja mäluga, saadavad nad oma mõõtmised tavapäraselt kesksesse serverisse, kus toimub andmete töötlemine. Paljudest sensoritest moodustub võrk, mis võimaldab keskkonnaparameetrite muutust ajas järgida, näiteks on seda võimalik rakendada tulekahjude tuvastamisel [20].

Andmekogud Eestis

Eestis viikse riikliku keskkonnaseire programmi abil muu hulgas läbi meteoroloogilist ja hüdroloogilist seiret, välisõhu, metsa, mulla, põhja- ja pinnavee seiret ning elustiku mitmekesisuse ja maastike seiret [17]. Keskkonnaseire käigus saadud andmed on talletatud Eesti keskkonnaseire andmekogusse (KESE). Lisaks otsestele seiretulemustele salvestatakse ka info seirekoha (seirejaama, -ala või -koha asukoht, pindala, kõrgus/sügavus, seotud objektid), parameetrite (metoodika, ühik) ja seireprogrammide (kuuluvus, kehtivus, läbiviijad) kohta [23].

KESE andmekogu on omakorda seotud Keskkonnaagentuuri poolt hallatava andmekoguga Eesti looduse infosüsteem (EELIS), mis koosneb keskses serveris töötavast PostgreSQL geoandmebaasist ja kasutaja töökohapõhisest rakendusest. Osa EELISes hoitavatest andmetest on läbi Keskkonnaportaali vabalt kättesaadavad, sealhulgas hulgas Eestis kaitstavad alad ja üksikobjektid, Eestis leiduvad liigid, veekogud, saared ja kaitsekorralduskavad. Lisaks sisaldub EELIS programmis veel mitmesuguseid andmestikke, millele on võimalik Keskkonnaagentuuri poole pöördudes ligipääsu saada [24]. KESE on seotud ka e-elurikkuse andmekoguga PLUTOF, mis võimaldab loodusvaatlejatele oma vaatlusandmete sisestamist [25].

Elustiili ja harjumuste mõju keskkonna jalajäljele IT alal

Inimese harjumuste mõju tervisele osatakse päris hästi endale teadvustada - naljalt ei leidu vist inimest, kes ei teaks, et ainult rasvase ja magusa toidu dieedil olles ning end harva liigutades raudset tervist ilmselt oodata ei ole. Üha rohkem on ka inimesi, kes saavad aru mitte ainult enda mõjust keskkonnale jäätmeid sorteerides või seda mitte tehes, vaid ka mõjust, mida avaldavad keskkonnale valikud ostlemisel. Keskkonnaministeeriumi tellitud ja 2022. aastal Turu-uuringute AS poolt läbi viidud keskkonnateadlikkuse uuringust selgub, et 81% elanikest peab end keskkonnateadlikuks ja vaid 14% elanikest arvab, et nad pole keskkonnateadlikud [26]. Igapäevaste keskkonda hoidvate tegevustena osataksegi nimetada prügi ja jäätmete sorteerimist, aga üha sagedamini ka keskkonnasäästliku transpordi kasutamist ja tarbimise piiramist, taaskasutust ja loodushoidu [26]. Märksa vähem teadvustatakse aga igapäevaselt nende harjumuste mõju keskkonnale, mille mõju on keerulisem või mitte nii otsene, sealhulgas nende harjumuste mõju, mida evitakse digimaailmas. Eelmainitud uuringust selgus ka, et vaid harva osati internetist videote vaatamist bioloogilise mitmekesisuse vähenemisega seostada [26].

Lihtsustatult vaadelduna veedab täiskohaga töötav inimene kolmandiku ööpäevast töökeskkonnas, umbes kolmandiku magades ja veel kolmandiku vaba aega veetes, mis võib sisaldada mitmesuguseid tegevusi. Kuidas mõjutavad tööalased, vaba aja veetmise või isegi magamisharjumused keskkonda infotehnoloogia kaudu?

IT harjumused tööl ja keskkonna jalajälg

Tööl (see tähendab tööajal või töökohas või tööajal töökohas) IT alaste harjumuste, mis keskkonnale mõju avaldavad, vaatlemisel ei tohi ära unustada, et tööl on inimestel laias laastus kahesuguseid harjumusi sõltuvalt sellest, kas nad on rohkem tööandja või töötaja rollis. Inimesed, kes on ettevõtetes või asutustes juhtivatel kohtadel, harjumused võivad suuresti erineda teiste töötajate omadest, sest nemad peavad käituma mitte üksnes enda vajadustest ja harjumustest lähtuvalt, vadi sageli terve organisatsiooni huvide ja harjumustega kooskõlas ja protsessid, mida juhtivatel tasanditel kujundatakse võivad nii soodustada kui pärssida harjumuste teket ülejäänud organisatsioonis ning need võivad mõju avaldada paljude teiste inimeste harjumustele.

IT harjumused kodus ja vaba aega veetes ning keskkonna jalajälg

IT harjumused magades ja keskkonna jalajälg

Kasutatud materjal

  1. OECD, "Impacts of Information and Communication Technologies on Environmental Sustainability: Speculations and Evidence", Report to the OECD. [www] https://www.oecd.org/sti/inno/1897156.pdf. Kasutatud: 24.02.2023.
  2. Becchetti, L., & Auci, S., "The Stability of the Adjusted and Unadjusted Environmental Kuznets Curve," FEEM Working Paper No. 93.05 (2005). doi: https://dx.doi.org/10.2139/ssrn.771227. Kasutatud: 14.04.2023.
  3. Freitag, C., Berners-Lee, M., "The climate impact of ICT: A review of estimates, trends and regulations" arXiv:2102.02622 [physics.soc-ph], (2020). doi: https://doi.org/10.48550/arXiv.2102.02622. Kasutatud: 15.04.2023.
  4. Moyer, J. D., & Hughes, B. B., "TICTs: do they contribute to increased carbon emissions?" Technological Forecasting and Social Change, 79(5), 919-931 (2012). doi: https://doi.org/10.1016/j.techfore.2011.12.005. Kasutatud: 15.04.2023.
  5. Higón, D. A., Gholami, R., ja Shirazi, F., " ICT and environmental sustainability: A global perspective," Telematics and Informatics, 34(4), 85-95 (2017). doi: https://doi.org/10.1016/j.tele.2017.01.001. Kasutatud: 15.04.2023.
  6. Monzón, A., Garcia-Castro, Á. ja Valdes, C., "Methodology to Assess the Effects of ICT-measures on Emissions. The Case Study of Madrid," Procedia Engineering, 178 (2017), 13-23. doi: https://doi.org/10.1016/j.proeng.2017.01.054. Kasutatud: 14.04.2023.
  7. Stewart, K., "Assessing the Carbon Impact of ICT Measures: A Case Study Investigation Using Latis Model", International Journal of Transportation Science and Technology, 4(3), 277-294 (2015). doi: https://doi.org/10.1260/2046-0430.4.3.277. Kasutatud: 14.04.2023.
  8. Chowdhury, G., "An agenda for green information retrieval research," Information Processing & Management, 48(6), 1067-1077 (2012). doi: https://doi.org/10.1016/j.ipm.2012.02.003. Kasutatud: 15.04.2023.
  9. 9.0 9.1 IEA, "https://www.iea.org/reports/data-centres-and-data-transmission-networks", Report. [www] https://www.iea.org/reports/data-centres-and-data-transmission-networks. Kasutatud: 14.04.2023.
  10. The Guardian, "Why Irish data centre boom is complicating climate efforts". [www] https://www.theguardian.com/environment/2020/jan/06/why-irish-data-centre-boom-complicating-climate-efforts. Kasutatud: 17.03.2023.
  11. Denis Naughten, "Data centres pushing up electricity costs for families". [www] https://denisnaughten.ie/2022/03/28/data-centres-pushing-up-electricity-costs-for-families-naughten/. Kasutatud:17.03.2023.
  12. EnergyTech, "Ireland's Data Center Power Crunch: Dublin Grapples With Cloud Growth, Utility Constraints". [www] https://www.energytech.com/microgrids/article/21247649/data-center-power-crunch-dublin-grapples-with-cloud-growth-utility-constraints. Kasutatud: 17.03.2023.
  13. Financial Times, "European ammunition maker says plant expansion hit by energy-guzzling TikTok site". [www] https://www.ft.com/content/f85aa254-d453-4542-a50e-fa1171971ab0. Kasutatud: 14.04.2023.
  14. 14.0 14.1 Yale, "Waste Heat: Innovators Turn to an Overlooked Renewable Resource", Published at the Yale School of the Environment. [www] https://e360.yale.edu/features/waste-heat-innovators-turn-to-an-overlooked-renewable-resource. Kasutatud: 12.03.2023.
  15. BBC, "Tiny data centre used to heat public swimming pool" [www] https://www.bbc.com/news/technology-64939558. Kasutatud: 23.03.2023.
  16. Climate Neutral Data Centre Pact [www] https://www.climateneutraldatacentre.net. Kasutatud: 14.04.2023.
  17. 17.0 17.1 Keskkonnaministeerium, "Keskkonnamõju ja seire" [www] https://envir.ee/keskkonnakasutus/keskkonnaseire. Kasutatud: 15.04.2023.
  18. Roberts, S., „Measuring the Relationship between ICT and the Environment", OECD Digital Economy Papers. No. 162, OECD Publishing, Paris. (2009) doi: https://doi.org/10.1787/221687775423. Kasutatud: 15.04.2023.
  19. 19.0 19.1 19.2 Parra, L. „Remote Sensing and GIS in Environmental Monitoring“, Appl. Sci., 12, 8045. (2022). doi: https://doi.org/10.3390/app12168045. Kasutatud: 15.04.2023.
  20. 20.0 20.1 20.2 Lloret, J.; Garcia, M.; Bri, D.; Sendra, S., „. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification“, Sensors , 9, 8722-8747 (2009). doi: https://doi.org/10.3390/s91108722. Kasutatud: 15.04.2023.
  21. Fortelli, A.; Fedele, A.; De Natale, G.; Matano, F.; Sacchi, M.; Troise, C.; Somma, R., „Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy,“ Appl. Sci. 11, 11460. (2021). doi: https://doi.org/10.3390/app112311460. Kasutatud: 15.04.2023.
  22. 22.0 22.1 22.2 22.3 Zhu, X., „GIS for Environmental Applications - A Practical Approach“ Routledge (2016). Kasutatud: 15.04.2023.
  23. Keskkonnaministeerium, "KESE" [www] https://kese.envir.ee/. Kasutatud: 15.04.2023.
  24. Keskkonnaagentuur, "EELIS Infoleht" [www] https://infoleht.keskkonnainfo.ee/default.aspx?id=-924928823&state=2;-924928823;est;eelisand. Kasutatud: 15.04.2023.
  25. Tartu Ülikooli loodusmuuseum ja botaanikaaed, "eElurikkus" [www] https://elurikkus.ee/observations/add. Kasutatud: 15.04.2023.
  26. 26.0 26.1 26.2 Turu-uuringute AS, "Eesti elanike keskkonnateadlikkuse uuring." [PDF] 2022. [www] https://envir.ee/kaasamine-keskkonnateadlikkus/keskkonnateadlikkus/uuringud. Kasutatud: 07.04.2023.